Struct linear_map::set::LinearSet
[−]
[src]
pub struct LinearSet<T> { /* fields omitted */ }
An implementation of a set using the underlying representation of a LinearMap where the value is ().
Examples
use linear_map::set::LinearSet;; // Type inference lets us omit an explicit type signature (which // would be `LinearSet<&str>` in this example). let mut books = LinearSet::new(); // Add some books. books.insert("A Dance With Dragons"); books.insert("To Kill a Mockingbird"); books.insert("The Odyssey"); books.insert("The Great Gatsby"); // Check for a specific one. if !books.contains("The Winds of Winter") { println!("We have {} books, but The Winds of Winter ain't one.", books.len()); } // Remove a book. books.remove("The Odyssey"); // Iterate over everything. for book in &books { println!("{}", book); }
The easiest way to use LinearSet
with a custom type is to derive
Eq
. We must also derive PartialEq
, this will in the
future be implied by Eq
.
use linear_map::set::LinearSet;; #[derive(Eq, PartialEq, Debug)] struct Viking<'a> { name: &'a str, power: usize, } let mut vikings = LinearSet::new(); vikings.insert(Viking { name: "Einar", power: 9 }); vikings.insert(Viking { name: "Einar", power: 9 }); vikings.insert(Viking { name: "Olaf", power: 4 }); vikings.insert(Viking { name: "Harald", power: 8 }); // Use derived implementation to print the vikings. for x in &vikings { println!("{:?}", x); }
Methods
impl<T: Eq> LinearSet<T>
[src]
fn new() -> LinearSet<T>
[−]
Creates an empty LinearSet.
Examples
use linear_map::set::LinearSet;; let mut set: LinearSet<i32> = LinearSet::new();
fn with_capacity(capacity: usize) -> LinearSet<T>
[−]
Creates an empty LinearSet with space for at least n
elements in
the map.
Examples
use linear_map::set::LinearSet;; let mut set: LinearSet<i32> = LinearSet::with_capacity(10);
impl<T> LinearSet<T> where
T: Eq,
[src]
T: Eq,
fn capacity(&self) -> usize
[−]
Returns the number of elements the set can hold without reallocating.
Examples
use linear_map::set::LinearSet;; let set: LinearSet<i32> = LinearSet::with_capacity(100); assert!(set.capacity() >= 100);
fn reserve(&mut self, additional: usize)
[−]
Reserves capacity for at least additional
more elements to be inserted
in the LinearSet
. The collection may reserve more space to avoid
frequent reallocations.
Panics
Panics if the new allocation size overflows usize
.
Examples
use linear_map::set::LinearSet;; let mut set: LinearSet<i32> = LinearSet::new(); set.reserve(10);
fn shrink_to_fit(&mut self)
[−]
Shrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.
Examples
use linear_map::set::LinearSet;; let mut set = LinearSet::with_capacity(100); set.insert(1); set.insert(2); assert!(set.capacity() >= 100); set.shrink_to_fit(); assert!(set.capacity() >= 2);
fn iter(&self) -> Iter<T>
[−]
An iterator visiting all elements in arbitrary order. Iterator element type is &'a T.
Examples
use linear_map::set::LinearSet;; let mut set = LinearSet::new(); set.insert("a"); set.insert("b"); // Will print in an arbitrary order. for x in set.iter() { println!("{}", x); }
fn difference<'a>(&'a self, other: &'a LinearSet<T>) -> Difference<'a, T>
[−]
Visit the values representing the difference.
Examples
use linear_map::set::LinearSet;; let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect(); let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect(); // Can be seen as `a - b`. for x in a.difference(&b) { println!("{}", x); // Print 1 } let diff: LinearSet<_> = a.difference(&b).cloned().collect(); assert_eq!(diff, [1].iter().cloned().collect()); // Note that difference is not symmetric, // and `b - a` means something else: let diff: LinearSet<_> = b.difference(&a).cloned().collect(); assert_eq!(diff, [4].iter().cloned().collect());
fn symmetric_difference<'a>(
&'a self,
other: &'a LinearSet<T>
) -> SymmetricDifference<'a, T>
[−]
&'a self,
other: &'a LinearSet<T>
) -> SymmetricDifference<'a, T>
Visit the values representing the symmetric difference.
Examples
use linear_map::set::LinearSet;; let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect(); let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect(); // Print 1, 4 in arbitrary order. for x in a.symmetric_difference(&b) { println!("{}", x); } let diff1: LinearSet<_> = a.symmetric_difference(&b).cloned().collect(); let diff2: LinearSet<_> = b.symmetric_difference(&a).cloned().collect(); assert_eq!(diff1, diff2); assert_eq!(diff1, [1, 4].iter().cloned().collect());
fn intersection<'a>(&'a self, other: &'a LinearSet<T>) -> Intersection<'a, T>
[−]
Visit the values representing the intersection.
Examples
use linear_map::set::LinearSet;; let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect(); let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect(); // Print 2, 3 in arbitrary order. for x in a.intersection(&b) { println!("{}", x); } let intersection: LinearSet<_> = a.intersection(&b).cloned().collect(); assert_eq!(intersection, [2, 3].iter().cloned().collect());
fn union<'a>(&'a self, other: &'a LinearSet<T>) -> Union<'a, T>
[−]
Visit the values representing the union.
Examples
use linear_map::set::LinearSet;; let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect(); let b: LinearSet<_> = [4, 2, 3, 4].iter().cloned().collect(); // Print 1, 2, 3, 4 in arbitrary order. for x in a.union(&b) { println!("{}", x); } let union: LinearSet<_> = a.union(&b).cloned().collect(); assert_eq!(union, [1, 2, 3, 4].iter().cloned().collect());
fn len(&self) -> usize
[−]
Returns the number of elements in the set.
Examples
use linear_map::set::LinearSet;; let mut v = LinearSet::new(); assert_eq!(v.len(), 0); v.insert(1); assert_eq!(v.len(), 1);
fn is_empty(&self) -> bool
[−]
Returns true if the set contains no elements.
Examples
use linear_map::set::LinearSet;; let mut v = LinearSet::new(); assert!(v.is_empty()); v.insert(1); assert!(!v.is_empty());
fn drain(&mut self) -> Drain<T>
[−]
Clears the set, returning all elements in an iterator.
fn clear(&mut self)
[−]
Clears the set, removing all values.
Examples
use linear_map::set::LinearSet;; let mut v = LinearSet::new(); v.insert(1); v.clear(); assert!(v.is_empty());
fn contains<Q: ?Sized>(&self, value: &Q) -> bool where
T: Borrow<Q>,
Q: Eq,
[−]
T: Borrow<Q>,
Q: Eq,
Returns true
if the set contains a value.
The value may be any borrowed form of the set's value type, but
Eq
on the borrowed form must match those for
the value type.
Examples
use linear_map::set::LinearSet;; let set: LinearSet<_> = [1, 2, 3].iter().cloned().collect(); assert_eq!(set.contains(&1), true); assert_eq!(set.contains(&4), false);
fn is_disjoint(&self, other: &LinearSet<T>) -> bool
[−]
Returns true
if the set has no elements in common with other
.
This is equivalent to checking for an empty intersection.
Examples
use linear_map::set::LinearSet;; let a: LinearSet<_> = [1, 2, 3].iter().cloned().collect(); let mut b = LinearSet::new(); assert_eq!(a.is_disjoint(&b), true); b.insert(4); assert_eq!(a.is_disjoint(&b), true); b.insert(1); assert_eq!(a.is_disjoint(&b), false);
fn is_subset(&self, other: &LinearSet<T>) -> bool
[−]
Returns true
if the set is a subset of another.
Examples
use linear_map::set::LinearSet;; let sup: LinearSet<_> = [1, 2, 3].iter().cloned().collect(); let mut set = LinearSet::new(); assert_eq!(set.is_subset(&sup), true); set.insert(2); assert_eq!(set.is_subset(&sup), true); set.insert(4); assert_eq!(set.is_subset(&sup), false);
fn is_superset(&self, other: &LinearSet<T>) -> bool
[−]
Returns true
if the set is a superset of another.
Examples
use linear_map::set::LinearSet;; let sub: LinearSet<_> = [1, 2].iter().cloned().collect(); let mut set = LinearSet::new(); assert_eq!(set.is_superset(&sub), false); set.insert(0); set.insert(1); assert_eq!(set.is_superset(&sub), false); set.insert(2); assert_eq!(set.is_superset(&sub), true);
fn insert(&mut self, value: T) -> bool
[−]
Adds a value to the set.
If the set did not have a value present, true
is returned.
If the set did have this key present, false
is returned.
Examples
use linear_map::set::LinearSet;; let mut set = LinearSet::new(); assert_eq!(set.insert(2), true); assert_eq!(set.insert(2), false); assert_eq!(set.len(), 1);
fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool where
T: Borrow<Q>,
Q: Eq,
[−]
T: Borrow<Q>,
Q: Eq,
Removes a value from the set. Returns true
if the value was
present in the set.
The value may be any borrowed form of the set's value type, but
Eq
on the borrowed form must match those for
the value type.
Examples
use linear_map::set::LinearSet;; let mut set = LinearSet::new(); set.insert(2); assert_eq!(set.remove(&2), true); assert_eq!(set.remove(&2), false);
Trait Implementations
impl<T: Clone> Clone for LinearSet<T>
[src]
fn clone(&self) -> LinearSet<T>
[−]
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0[−]
Performs copy-assignment from source
. Read more
impl<T> PartialEq for LinearSet<T> where
T: Eq,
[src]
T: Eq,
fn eq(&self, other: &LinearSet<T>) -> bool
[−]
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0[−]
This method tests for !=
.
impl<T> Eq for LinearSet<T> where
T: Eq,
[src]
T: Eq,
impl<T> Debug for LinearSet<T> where
T: Eq + Debug,
[src]
T: Eq + Debug,
impl<T> FromIterator<T> for LinearSet<T> where
T: Eq,
[src]
T: Eq,
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> LinearSet<T>
[−]
Creates a value from an iterator. Read more
impl<T> Extend<T> for LinearSet<T> where
T: Eq,
[src]
T: Eq,
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
[−]
Extends a collection with the contents of an iterator. Read more
impl<'a, T> Extend<&'a T> for LinearSet<T> where
T: 'a + Eq + Copy,
[src]
T: 'a + Eq + Copy,
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)
[−]
Extends a collection with the contents of an iterator. Read more
impl<T> Default for LinearSet<T> where
T: Eq,
[src]
T: Eq,
impl<K: Eq> Into<Vec<K>> for LinearSet<K>
[src]
impl<'a, 'b, T> BitOr<&'b LinearSet<T>> for &'a LinearSet<T> where
T: Eq + Clone,
[src]
T: Eq + Clone,
type Output = LinearSet<T>
The resulting type after applying the |
operator
fn bitor(self, rhs: &LinearSet<T>) -> LinearSet<T>
[−]
Returns the union of self
and rhs
as a new LinearSet<T>
.
Examples
use linear_map::set::LinearSet;; let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect(); let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect(); let set = &a | &b; let mut i = 0; let expected = [1, 2, 3, 4, 5]; for x in &set { assert!(expected.contains(x)); i += 1; } assert_eq!(i, expected.len());
impl<'a, 'b, T> BitAnd<&'b LinearSet<T>> for &'a LinearSet<T> where
T: Eq + Clone,
[src]
T: Eq + Clone,
type Output = LinearSet<T>
The resulting type after applying the &
operator
fn bitand(self, rhs: &LinearSet<T>) -> LinearSet<T>
[−]
Returns the intersection of self
and rhs
as a new LinearSet<T>
.
Examples
use linear_map::set::LinearSet;; let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect(); let b: LinearSet<_> = vec![2, 3, 4].into_iter().collect(); let set = &a & &b; let mut i = 0; let expected = [2, 3]; for x in &set { assert!(expected.contains(x)); i += 1; } assert_eq!(i, expected.len());
impl<'a, 'b, T> BitXor<&'b LinearSet<T>> for &'a LinearSet<T> where
T: Eq + Clone,
[src]
T: Eq + Clone,
type Output = LinearSet<T>
The resulting type after applying the ^
operator
fn bitxor(self, rhs: &LinearSet<T>) -> LinearSet<T>
[−]
Returns the symmetric difference of self
and rhs
as a new LinearSet<T>
.
Examples
use linear_map::set::LinearSet;; let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect(); let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect(); let set = &a ^ &b; let mut i = 0; let expected = [1, 2, 4, 5]; for x in &set { assert!(expected.contains(x)); i += 1; } assert_eq!(i, expected.len());
impl<'a, 'b, T> Sub<&'b LinearSet<T>> for &'a LinearSet<T> where
T: Eq + Clone,
[src]
T: Eq + Clone,
type Output = LinearSet<T>
The resulting type after applying the -
operator
fn sub(self, rhs: &LinearSet<T>) -> LinearSet<T>
[−]
Returns the difference of self
and rhs
as a new LinearSet<T>
.
Examples
use linear_map::set::LinearSet;; let a: LinearSet<_> = vec![1, 2, 3].into_iter().collect(); let b: LinearSet<_> = vec![3, 4, 5].into_iter().collect(); let set = &a - &b; let mut i = 0; let expected = [1, 2]; for x in &set { assert!(expected.contains(x)); i += 1; } assert_eq!(i, expected.len());
impl<'a, T> IntoIterator for &'a LinearSet<T> where
T: Eq,
[src]
T: Eq,
type Item = &'a T
The type of the elements being iterated over.
type IntoIter = Iter<'a, T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Iter<'a, T>
[−]
Creates an iterator from a value. Read more
impl<T> IntoIterator for LinearSet<T> where
T: Eq,
[src]
T: Eq,
type Item = T
The type of the elements being iterated over.
type IntoIter = IntoIter<T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> IntoIter<T>
[−]
Creates a consuming iterator, that is, one that moves each value out of the set in arbitrary order. The set cannot be used after calling this.
Examples
use linear_map::set::LinearSet;; let mut set = LinearSet::new(); set.insert("a".to_string()); set.insert("b".to_string()); // Not possible to collect to a Vec<String> with a regular `.iter()`. let v: Vec<String> = set.into_iter().collect(); // Will print in an arbitrary order. for x in &v { println!("{}", x); }